Written Addition

Addition is the calculation we use to find the **total** of two or more numbers. We can also call this a **sum**.

We use the **plus** symbol for addition: +

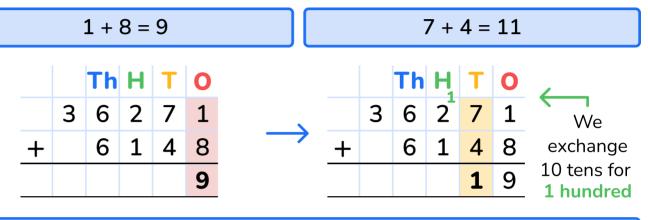
A lot of sums can be calculated mentally, but with bigger numbers it is usually easier to use a written method called **column addition**.

We line up the numbers in columns, by **place** value.

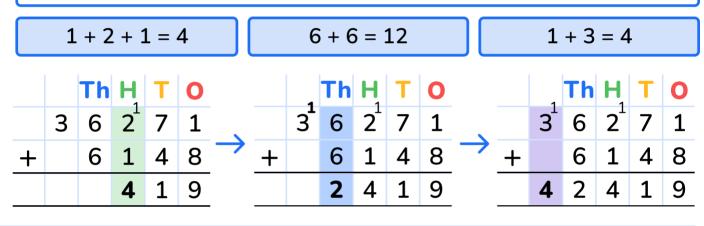
For example, we line up 36,271 and 6,148 by making sure the **ones** are in the same column.

		Th	H	T	0
	3	6	2	7	1
+		6	1	4	8

Then we add the numbers, column by column, starting with the rightmost column.



We continue solving each column one by one, going left.



The sum is **42,419**!

Example Question

What is the missing digit in the following addition?

A

3

B

C 6

D 7

E 8

- 1 There are no exchanges in the ones or tens column. Let's move on!
- In the **hundreds column**, we can see that an **exchange** occurs.

$$4 + 9 = 13$$

10 hundreds are **exchanged** for 1 thousand.

We add a little 1 in the thousands column.

		Th	Н	T	0
	2	6	4	7	3
+	6		9	1	5
	9	3	3	8	8

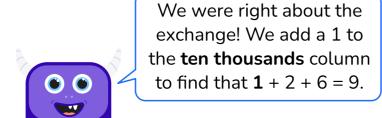
Now we can just solve the calculation in the thousands column, using number facts.

$$1 + 6 + \square = 3$$

This is impossible! There must be an **exchange**.

Now we can fill in the gap: 1 + 6 + 6 = 13

The missing digit is **6**!



	4	Th	Н	T	0
	2	6	4	7	3
+	6	6	9	1	5
	9	3	3	8	8