Division is the calculation we use to share an amount into equal groups. The result of a division is called a **quotient**.

The **division** symbol looks like this: \div

Sometimes a number **cannot** be exactly divided into **equal groups** by another number. When this happens, the amount left over is called **the remainder**.

Let's say we have **10 matches** and we want to make as many triangles as possible, where each triangle is made up of **3 matches**.

Remainders

We can make **3 complete triangles** but then we have **one** match **left over**!

This means that 10 divided by 3 is equal to **3 with a remainder of 1**. In maths, we write $10 \div 3 = 3 r 1$.

How can we solve a problem with **short division** when there is a **remainder**?

Start by writing the number we are dividing (the **dividend**) inside the 'bus stop' and the number we are dividing it by (the **divisor**) outside!

693

Here is an example with $93 \div 6$.

1

2

3

4

2

We start with the **first digit** inside the bus stop. This is in the tens column.

How many times does 6 go into 9? In other words, what is $9 \div 6$?

6 goes into 9 only **once** so we write a **1** on top of the 'bus stop' over the 9.

When we divide 9 by 6, we get a **remainder of 3**. We can **exchange** this remainder (3 tens) for 30 ones. We show this exchange with a **little 3**.

Then, we move on to the next digit to the right, in the ones column.

The 3 tens we exchanged are added on to the 3, so our next step is to figure out how many times 6 goes into 33. Or, $33 \div 6$.

We know that $30 \div 6 = 5$ so we can figure out...

 $33 \div 6 = 5$, with 3 remaining.

We write a 5 over the line above the 3.

We still have 3 left over from our last step. We show this in our short division by adding the **remainder** to the right of the answer!

62r2

We have reached the answer! 93 divided by 6 is equal to **15 with a remainder of 3**. This means that we can make **6 equal groups** of 15 out of 93 but that there are 3 more that we cannot group!

A school of 650 students goes to a theme park. On Doom Fall, the

fastest roller coaster at the park, each car seats 4 children.

How many cars are needed for the whole school to go on Doom Fall?

To answer this question we need to **divide 650 by 4**.

We can use short division to do this.

 $6 \div 4 = \mathbf{1}$, with 2 remaining.

 $25 \div 4 = 6$, with 1 remaining.

	$10 \div 4 = 2$, with 2 remaining.
3	Dividing 650 by 4 has given us an answer of 162 with a remainder of 2 .
	This means that the students would fill 162 cars of the roller coaster completely, and after that there would be 2 students left over.
4	For the whole school to go on the ride, we need to count one extra car for the remaining 2 students.
	162 + 1 = 163
	For everyone to ride, 163 cars are needed.

Discover more at atomlearning.com